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Abstract
A general mathematical basis for analyzing propagation of partially coherent
light in nonlinear, non-instantaneous, Kerr media is presented. The presentation
unifies existing approaches, but also provides the generalizations necessary for
an analysis of more complicated wave fields than those previously considered.
In particular, it is demonstrated how to generalize the analysis to situations
where the light field originates from several sources, which do not necessarily
have the same stochastic properties.

PACS numbers: 42.25.Kb, 42.65.Tg, 42.65.−k

1. Introduction

Nonlinear wave propagation is an important topic in a wide range of very diverse physical
areas, e.g. in optics and plasma physics as well as in Bose–Einstein condensates, and in
particular the possibility of soliton formation has attracted strong interest over many years [1].
Until quite recently, the commonly held impression was that solitons are inherently coherent
structures with well-defined amplitudes and phases, existing as a stable balance between two
counteracting effects, e.g. dispersion and self focusing. However, in the middle of the 1990s,
it was demonstrated that partially coherent and even incoherent spatial optical solitons are
also possible [2–7]. More specifically, partially coherent bright optical solitons were found to
exist in nonlinear, non-instantaneous media such as biased photo-refractive crystals where the
response of the medium is so slow that it only reacts on the time-averaged intensity.

With the first experimental observation of partially coherent solitons [3], a new branch
of research within the field of nonlinear optics was initiated and has subsequently attracted
strong interest. Theoretical analysis of the dynamics of partially coherent light involves a
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stochastic description of the field envelope. Specifically, as was shown in a pioneer paper by
Pasmanik [2], a self-consistent description of the problem is possible using the auto-correlation
function (CF) of the field envelope. More recently the Wigner function (WF) approach [8]
was also suggested for studies of the same problem. The Wigner function is unambiguously
related to the correlation function by being simply its Fourier transform and therefore the
CF and Wigner approaches are completely equivalent. Since both these approaches are
mathematically complicated, two alternative simplifications have been developed, namely the
mode expansion (ME) approach [4] and the coherent density function (CDF) approach [5].
It has been shown [9, 10] that the characteristic evolution equations within the ME and CDF
descriptions are in fact completely equivalent to the CF and Wigner evolution equations.
However, the correspondence between the different descriptions and the source conditions,
which is a key part of the problem, has not been fully discussed in the literature, although
some of the associated problems were mentioned in [9]. Specifically, up to now no regular
method has been formulated for how to find the proper ME and CDF for arbitrary source
conditions. This means that the applicability of the ME or CDF formalisms has not been
completely demonstrated.

The main purpose of the current paper is to present a unified mathematical background for
analyzing propagation of partially coherent light excited by an arbitrary source in nonlinear and
non-instantaneous media. Emphasis in the analysis is on the formulation of proper evolution
equations and source conditions for the propagation of certain functions that characterize
the stochastic wave field itself. The presentation relates the existing approaches mentioned
above, but also provides the generalizations necessary to justify the ME and CDF approaches.
Specifically a regular method is proposed for how to apply the ME and CDF formalisms for
arbitrary source conditions and the ambiguity of the choice of ME and CDF formulations for
the same source conditions is discussed. The procedure is illustrated by particular examples
including an analysis of the interaction between two soliton stripes with different stochastic
properties (a soliton stripe is a two-dimensional entity that is uniform in one dimension and
soliton shaped in the other). The final result is given in terms of the proper evolution equations
whereas the concomitant solutions are not discussed.

2. Mathematical models of partially coherent nonlinear optics and their problems

The present analysis considers propagation of partially coherent light in nonlinear Kerr media,
where the basic model is the nonlinear Schrödinger (NLS) equation with an intensity dependent
refractive index. It describes the evolution of a slowly varying wave envelope function,
ψ(t, �r, z), as follows,

i
∂ψ

∂z
+

1

2
∇2ψ + Nψ = 0 ψ(t, �r, 0) = �(t, �r), (1)

where z is the normalized distance of propagation, t denotes time measured in a frame moving
with the group velocity of the wave, the operator ∇2 refers to the transverse coordinate �r .
N = N(t, �r, z) accounts for the small nonlinear perturbation of the refractive index and is
assumed to depend non-instantaneously on the field intensity |ψ |2. This implies that if the
intensity involves fast time variations, the slow medium response will average over these
fast temporal fluctuations and N becomes a function of 〈|ψ |2〉 only, where 〈 〉 denotes time
averaging. For a Kerr medium, N = 〈|ψ |2〉. Finally, we note that in the form of the NLS
equation given by equation (1), dispersive effects (i.e. higher order derivatives in time) have
been neglected as compared to the (assumed) dominating diffraction effects.

In general, a theoretical analysis of incoherent light propagation in a nonlinear medium
should be based on determining the evolution of the field ψ(t, �r, z) for a given source function
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�(t, �r). However when details of the fast temporal fluctuations of the field are not important,
these fluctuations can be considered as a stochastic process, which can be characterized, for
instance, by its auto-correlation function (CF)

K(t, �r1, �r2, z) = 〈ψ∗(t, �r1, z)ψ(t, �r2, z)〉.
Furthermore, if the source function �(t, �r) represents a stationary stochastic process (with
respect to time), the wave field ψ(t, �r, z) is also a stationary stochastic process at any point in
space and its CF as well as the medium refractive index do not depend on time. In this case the
use of the CF allows one to present a complete self-consistent description of the propagation
of the incoherent light. The evolution of the CF is governed by [2]

i
∂K

∂z
− 1

2
∇2

�r1
K +

1

2
∇2

�r2
K − [N(�r1, z) − N(�r2, z)]K = 0

(2)
N(�r, z) = K(�r, �r, z)

with boundary conditions determined by the source function

K(�r1, �r2, z = 0) = 〈�∗(t, �r1)�(t, �r2)〉. (3)

An alternative possibility for giving a self-consistent description of the nonlinear
propagation of partially incoherent light is provided by the Wigner function (WF) [8]. The
WF and the CF form a Fourier transform pair according to

ρ(�r, �p, z) = 1

(2π)l

∫
K(�r + �ξ/2, �r − �ξ/2, z) exp(i�p · �ξ) dl�ξ

K(�r1, �r2, z) =
∫

ρ

(�r1 + �r2

2
, �p, z

)
exp[i(�p · (�r2 − �r1)] dl �p, (4)

where l denotes the dimension of the transverse coordinate space. The boundary condition for
the WF is determined by the source function whereas its evolution equation is given by [8]

∂ρ

∂z
+ �p · ∇�rρ + 2N(�r, z) sin

(
1

2
←−∇ �r

−→∇ �p

)
ρ = 0

N(�r, z) =
∫

ρ(�r, �p, z) dl �p. (5)

Here the sine operator should be interpreted in terms of its expansion and the arrows indicate
the direction of operation of the derivatives in its argument.

The evolution equations (2) and (5) are too complicated even for the numerical solution.
Therefore, in the literature great attention has been paid to a search for some particular
simplifications of the problem using different representations of the correlation function.
Specifically, within the mode expansion (ME) approach, the CF is represented as a discrete
sum

K(�r1, �r2, z) =
∑

n

F ∗
n (�r1, z)Fn(�r2, z), (6)

where all mode functions Fn satisfy the same NLS equation (1), but with different boundary
conditions. These boundary conditions are the main problem of the ME theory since it is not
specified how to determine the boundary conditions for the mode functions Fn in the case of an
arbitrary source function �(t, �r). The same problem is associated with the coherent density
function (CDF) [5]. Within this approach, the CF is represented by the following integral,

K(�r1, �r2, z) =
∫

f ∗(�r1, �θ, z)f (�r2, �θ, z) exp[i�θ · (�r2 − �r1)] dl�θ, (7)
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where the evolution of the CDF, f (�r, �θ, z), is governed by the equation

i
∂f

∂z
+ i�θ · ∇f +

1

2
∇2f + Nf = 0, N(�r, z) =

∫
|f (�r, �θ, z)|2 dl�θ. (8)

Typically, the CDF is treated as a pure auxiliary function and it has never been shown how to
find the CDF corresponding to an arbitrary source function.

Thus the current situation with the ME and CDF approaches is quite unsatisfactory. The
evolution equations (1) and (8) are simpler and more useful for numerical simulations than
equations (2) or (5). However the necessary boundary conditions are not formulated for general
sources and there is no rigorous justification that the ME or CDF are generally applicable to
describe the CF of partially coherent light.

3. Justification of the modal expansion and coherent density function approaches

The purpose of the present section is to introduce the fundamental mathematical aspects and
concepts involved in an analysis of the NLS equation (1) and to discuss their relation to
the different approaches used to simplify the analysis of nonlinear propagation of partially
coherent light.

As mentioned above, when the source function �(t, �r) is a stationary stochastic process
(with respect to time), the refractive index of the medium does not depend on time. This makes
it possible to separate the time dependence of the wave field by expanding the condition at
z = 0 in a suitable set of basis (or modal) functions, {�n(�r)}, according to, cf [11],

ψ(t, �r, 0) = �(t, �r) =
∑

n

Cn(t)�n(�r) (9)

and then write

ψ(t, �r, z) =
∑

n

Cn(t)ϕn(�r, z), (10)

where each function, ϕn satisfies a NLS equation of the same form as equation (1) i.e.

i
∂ϕn

∂z
+

1

2
∇2ϕn + Nϕn = 0

(11)
ϕn(�r, 0) = �n(�r).

The nonlinear change in the refractive index, which is determined by the averaged field
intensity, can be expressed as

N = 〈|ψ |2〉 = K(�r, �r, z), (12)

where K denotes the CF, which, using the expansion of ψ(t, �r, z), can be expressed in terms
of the functions ϕn as

K(�r1, �r2, z) = 〈ψ∗(t, �r1, z)ψ(t, �r2, z)〉 =
∑
mn

Anmϕ∗
n(�r1, z)ϕm(�r2, z). (13)

We emphasize that the correlation matrix Anm does not depend on time and is determined by
the coefficients of the expansion (9):

Anm = 〈C∗
n(t)Cm(t)〉. (14)

Thus, equation (11) together with equations (12) and (13) constitute the most general approach
to a self-consistent description of the nonlinear propagation of partially coherent light using
the representation of the CF in terms of a discrete sum. Within this approach the boundary
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conditions are completely determined in contrast to the ME theory which considers only the
very particular case corresponding to the unit correlation matrix, i.e. when Anm = δnm.

We emphasize that the same wave field �(t, �r) can be expressed in terms of different basis
functions {�n(�r)}. Certainly the functions ϕn(�r, z), as well as the expansion coefficients Cn(t)

and thereby the correlation matrix Anm, depend on the choice of the set of basis functions.
Therefore it is convenient to look for a basis which makes the correlation matrix equal to the
unit matrix. A solution of this problem for arbitrary source function �(t, �r) would provide a
justification of the ME approach and give a possibility for determining the necessary boundary
conditions. As shown below a solution of this problem always exists and is not even unique,
i.e. the same wave field can be described within the ME approach using quite different mode
representations.

Actually, since the correlation matrix, Anm, is Hermitian, there always exists a unitary
transformation, Ã = U · A · U−1 or Ãnm = ∑

kr UnkAkrU
∗
mr (where U is a unitary matrix for

which the components satisfy the equalities
∑

k UnkU
∗
mk = δnm) that transforms this matrix to

a diagonal form with Ãnm = αnδnm, where αn denote the eigenvalues of the original correlation
matrix Anm. All these eigenvalues are real and non-negative since the CF is positive definite.
Correspondingly, a transformation to the new basis functions {ϕ̃n}

ϕ̃n =
∑
m

Unmϕm (15)

reduces the representation, equation (13), to its normal form:

K(�r1, �r2, z) =
∑

n

αnϕ̃
∗
n(�r1, z)ϕ̃n(�r2, z). (16)

The transition from the normal to the canonical or ME representation of the CF, equation (6),
corresponds to basis functions given by

Fn = √
αnϕ̃n. (17)

Evidently, the functions {ϕ̃n}, as well as the functions {Fn}, satisfy the same evolution equations
as {ϕn}, but with different boundary conditions determined by (9) and transformations (15)
and (17). Thus the above results justify the applicability of the ME approach in general cases
and present a regular way for finding the necessary boundary conditions for the modes.

It should be emphasized that the number of nonzero terms in the modal expansion can
be less than the number of the original basis functions {�n} if some of the eigenvalues αn are
equal to zero. If so, this means that there are correlations in the excitation of some of the
original basis functions. Furthermore, it is evident that the modal expansion corresponding to
a given source function �(t, �r) is not unique since any transformation

gn(�r, z) =
∑
m

ŨnmFm(�r, z) (18)

based on an arbitrary unitary matrix Ũnm will result in the same canonical or ME representation
of the CF, but in terms of the new generating functions {gn} which satisfy the same NLS
equations as the ME functions {Fn}.

However, among different sets of generating functions there is only one set for which the
functions are mutually orthogonal. To find this unique set of generating functions one should
start with an original basis {�n} that is mutually orthogonal and normalized to unity. In this
case the transformation (15) results in functions {ϕ̃n} which also are mutually orthogonal and
normalized to unity. In fact these functions are the eigenfunctions of the following Fredholm
integral equation of the second kind, cf [12, 13]:

αnϕ̃n(�r2, z) =
∫

K(�r1, �r2, z)ϕ̃n(�r1, z) dl�r1. (19)

5
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The corresponding functions, {g̃n = √
αnϕ̃n}, will be mutually orthogonal (but not normalized

to unity) and can be taken as the unique set of generating functions mentioned above.
Thus, an analysis of the propagation of partially coherent light can be based on an

expansion of the field ψ(t, �r, z) = ∑
n Gn(t)g(�r, z) in terms of generating functions {gn}

which can be taken as mutually orthogonal. This makes it possible to use the multi-mode
approach, [4], even in cases when the excitation of the source modes, �n(�r) is not completely
uncorrelated. Furthermore, in the latter case, the above considerations provide a regular way
of finding the generating functions by diagonalization of the matrix Amn or by solving the
eigenvalue problem given by equation (19). However, the problem of finding a suitable set
of generating functions may prove difficult for general initial conditions, �(t, �r). Again we
emphasize that the choice of orthogonal modes for the expansion given in equation (9) is not
unique and neither is the choice of uncorrelated modes. Only the choice of modes which are
at the same time orthogonal and uncorrelated is unique.

Instead of the discrete expansion procedure presented above, it may be useful (or even
necessary) to use a continuous Fourier expansion, i.e. to write

�(t, �r) =
∫

C(�θ, t)�(�θ, �r) dl�θ, (20)

where the Fourier harmonics, �(�θ, �r) = (1/
√

2π)l exp(i�θ · �r), represent a closed basis which
is orthogonal and normalized, i.e.

∫
�∗(�θ1, �r)�(�θ2, �r)dl�r = δ(�θ1 − �θ2).

The different steps in the subsequent continuous analysis are analogous to those of the
discrete analysis presented above. The wave field is now expressed as, cf equation (10)

ψ(t, �r, z) =
∫

C(�θ, t)ϕ(�θ, �r, z) dl�θ (21)

where ϕ(�θ, �r, 0) = �(�θ, �r) and the function, ϕ(�θ, �r, z), satisfies the same NLS equation as
ϕn(�r, z), with the averaged field intensity expressed in terms of the mutual correlation function,
which is given by

K(�r1, �r2, z) =
∫ ∫

A(�θ1, �θ2)ϕ
∗(�θ1, �r1, z)ϕ(�θ2, �r2, z) dl�θ1 dl�θ2. (22)

The correlation properties are defined by

A(�θ1, �θ2) = 〈C∗(�θ1, t)C(�θ2, t)〉, (23)

and similarly to the discrete case, A(�θ1, �θ2) can be made diagonal using a unitary transformation
ϕ(�θ, �r, z) → ϕ̃(�θ, �r, z), which implies that the correlation function can be written in the
following quadratic form:

K(�r1, �r2, z) =
∫

α(�θ)ϕ̃∗(�θ, �r1, z)ϕ̃(�θ, �r2, z) dl�θ (24)

or in terms of the generating functions (g̃(�θ, �r, z) = √
α(�θ)ϕ̃(�θ, �r, z)):

K(�r1, �r2, z) =
∫

g̃∗(�θ,�r1, z)g̃(�θ, �r2, z) dl�θ. (25)

It should be noted that starting from the orthogonal and normalized Fourier basis �(�θ, �r),
a unitary transformation will lead to a normalized and orthogonal basis ϕ̃(�θ, �r, z) and
subsequently to the concomitant orthogonal generating function g̃(�θ, �r, z). However the
generating functions are not normalized and therefore an application of one more unitary
transformation (g̃(�θ, �r, z) → g(�θ, �r, z)) results in the same canonical form of the CF, equation
(25), although with g(�θ, �r, z) being nonorthogonal. This means that similarly to the discrete
case, the generating functions and the representation given by equation (25) are not unique.

6
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The evolution of any generating function is governed by the NLS equation with the intensity
expressed in terms of the correlation function.

This continuous description of partially coherent wave propagation in nonlinear media
can be used to justify the introduction of the CDF [5] and to determine its relation to the source
function. Actually, it is clear from the above analysis that the function defined by

f (�r, �θ, z) = g̃(�r, �θ, z) exp
(
−i�θ · �r + i 1

2
�θ2z

)
(26)

possesses all the properties of the CDF. Thus, the regular procedure for determining generating
functions consequently also gives a regular procedure for determining the CDF corresponding
to any given source field. On the other hand, the non-uniqueness of the generating function
implies the possibility of using different CDFs for describing the same wave field.

4. Examples

In this section we present some examples that illustrate the procedure and concepts discussed
above.

Example 1. Consider first a wave field which at z = 0 is given by �(t, �r) = C1(t)�1(�r) +
C2(t)�2(�r) where however �1 and �2 are neither normalized nor mutually orthogonal. The
corresponding correlation matrix is given by

Anm = 〈C∗
n(t)Cm(t)〉 =

(
1 R

R∗ 1

)
(27)

where R is the correlation coefficient (0 � |R| � 1) between C1(t) and C2(t). When R = 0,
the procedure for solving the propagation problem using the ME approach is evident—it is
sufficient to take two modal functions F1(�r, z), F2(�r, z) which satisfy the boundary conditions
Fn(�r, 0) = �n(�r). However, in the case when R 	= 0, the original formulation of the ME
theory does not give a direct prescription for how to solve the problem. On the other hand, the
analysis presented here directly prescribes how to find the boundary conditions for the proper
generating functions. Actually, if R 	= 0, the unitary transformation

�̃1(�r) = a∗�1(�r) + a�2(�r)
(28)

�̃2(�r) = a∗�1(�r) − a�2(�r)
with a = √

R/(2|R|) makes it possible to represent the condition at z = 0 in terms of the new
functions

�(t, �r) = C̃1(t)�̃1(�r) + C̃2(t)�̃2(�r), (29)

where the coupling matrix now is diagonal and given by

Ãnm = 〈C̃∗
n(t)C̃m(t)〉 =

(
1 + |R| 0

0 1 − |R|
)

. (30)

Therefore the new functions �̃1,2 can be taken as boundary conditions for the two generating
functions g1(�r, 0) = √

1 + |R|�̃n(�r) and g2(�r, 0) = √
1 − |R|�̃n(�r). Clearly, in the case

of strong correlation (|R| = 1), there is only one nontrivial generating function. It is also
possible to state that if |R| 	= 1, then any unitary transformation applied to the generating
functions g1,2 will result in a pair of new generating functions and any set of such generating
functions can be taken as the modes, F1,2, within the ME approach.

Example 2. The next example can be considered as a generalization of the previous one to
the case of a continuous expansion of the source field. Although, in principle, the continuous

7
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Fourier expansion (20) can be used for any initial condition, �(t, �r), the CDF approach usually
deals with only a very simple particular case which can be expressed as follows [1],

�(�r, t) = M(�r)
∫

C(�θ, t) exp(i�θ · �r) dl�θ, (31)

where the expansion coefficients C(�θ, t) are delta-correlated, i.e. A(�θ1, �θ2) =
〈C∗(�θ1, t)C(�θ2, t)〉 = J (�θ1)δ(�θ1 − �θ2). The source function (31) represents a deterministic
modulation (a modulation described by the function M(�r)) of a spatially uniform stochastic
field with a spatial spectral intensity given by J (�θ). According to (22)–(25) the unmodulated
field can be described by a generating function which at z = 0 satisfies the condition

g(�θ, �r, 0) =
√

J (�θ) exp(i�θ · �r). The corresponding boundary condition for the CDF is given

by f (�θ, �r, 0) =
√

J (�θ) (cf (26)). When M(�r) is not a constant, the source function (31) does
not represent a complete Fourier expansion. Nevertheless the CF of the modulated field can
easily be expressed in a canonical form by using a generating function satisfying the boundary

condition g̃(�θ, �r, 0) =
√

J (�θ)M(�r) exp(i�θ · �r) which corresponds to the CDF satisfying the

condition f (�θ, �r, 0) =
√

J (�θ)M(�r), cf [1].
The situation concerning the boundary conditions is similarly unclear in the case of the

CDF approach if at z = 0 the field is generated by several partially correlated sources. Let us
consider, for example, a case when there are two such sources and the light from each source
is modulated independently, i.e. the boundary condition can be written as, cf [14]:

�(�r, t) = �1(�r, t) + �2(�r, t)
(32)

�k(�r, t) = Mk(�r)
∫

Ck(�θ, t) exp(i�θ · �r) dl�θ,

where the statistical properties of the expansion coefficients are given by

A11(�θ1, �θ2) = 〈C∗
1 (�θ1, t)C1(�θ2, t)〉 = J (�θ1)δ(�θ1 − �θ2)

A22(�θ1, �θ2) = 〈C∗
2 (�θ1, t)C2(�θ2, t)〉 = J (�θ1)δ(�θ1 − �θ2)

(33)
A12(�θ1, �θ2) = 〈C∗

1 (�θ1, t)C2(�θ2, t)〉 = J (�θ1)R(�θ1)δ(�θ1 − �θ2)

A21(�θ1, �θ2) = A∗
12(

�θ1, �θ2).

When the correlation factor, R(�θ) = 0, the correlation function can be expressed in a canonical
form in terms of two generating functions, g̃1(�θ, �r, z) and g̃2(�θ, �r, z), which satisfy the
conditions

g̃k(�θ, �r, 0) =
√

J (�θ)Mk(�r) exp(i�θ · �r). (34)

The corresponding coherent density functions fk(�θ, �r, z) are given by

fk(�θ, �r, 0) =
√

J (�θ)Mk(�r). (35)

However, in the case when the correlation factor R(�θ) does not vanish, the matrix Akn(�θ1, �θ2)

becomes non-diagonal, and to obtain the canonical form of the CF one needs a unitary
transformation similar to that given by equation (28), namely

M̃1(�r, �θ) = u(�θ)∗M1(�r) + u(�θ)M2(�r)
(36)

M̃2(�r, �θ) = u(�θ)∗M1(�r) − u(�θ)M2(�r)
8
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where u(�θ) =
√

R(�θ)/|R(�θ)|. This transformation implies that the conditions on the
generating and coherent density functions become

g̃1,2(�θ, �r, 0) =
√

1 ± |R(�θ)|
√

J (�θ)M̃1,2(�θ, �r) exp(i�θ · �r)

f̃1,2(�θ, �r, 0) =
√

1 ± |R(�θ)|
√

J (�θ)M̃1,2(�θ, �r), (37)

where the plus and minus signs correspond to indices 1 and 2 respectively.

Example 3. Considerable interest recently has been devoted to the dynamics of partially
coherent ‘soliton stripes’, which are structures that at z = 0 have a soliton modulation in the
x-direction and contain stochastic Fourier components in the y-direction, i.e. they are of the
form �(t, x, y, 0) = M(x)

∫
C(θ, t) exp(iθy)dθ (cf equation (31)). In this example, we will

consider the mathematical formulation of the interaction between two co-propagating soliton
stripes [14] and show that the problem can be reduced to a study of the interaction between
completely coherent vector waves (for a recent analysis of such a system, see, e.g., [15]).
Consider the total field at z = 0 as given by

�(t, x, y) =
2∑

n=1

Mn(x)

∫
Cn(θ, t) exp(iθy) dθ, (38)

where the coefficients, Cn(θ, t), satisfy equation (33). In this case the average wave intensity
and consequently also the refractive index of the medium are independent of the coordinate y,
which makes it possible to separate the dependence of y in the wave field, by writing

ψ(t, x, y, z) =
2∑

n=1

φn(x, z)

∫
Cn(θ, t) exp

(
iθy − iθ2

2
z

)
dθ. (39)

Each function, φn(x, z), satisfies a one-dimensional NLS equation of the form

i
∂φn

∂z
+

1

2

∂2φn

∂x2
+ Nφn = 0, (40)

where

N = 〈|ψ |2〉 =
2∑

n,k=1

Bknφ
∗
k (x, z)φn(x, z)

(41)
φn(x, 0) = Mn(x).

The matrix Bkn is determined by the spectral intensity, J (θ), and the correlation coefficient,
R(θ), according to

B11 = B22 =
∫

J (θ)dθ

(42)
B12 =

∫
J (θ)R(θ) dθ = B∗

21.

This reduces the original problem to that considered in example 2. Using a transformation
similar to that given in equation (28), it is possible to present the average intensity, i.e. the
correlation function, K(x, x, y, y, z) = N(x, z), in its canonical form:

N(x, z) = |g̃1(x, z)|2 + |g̃2(x, z)|2, (43)

where the generating functions are given by

g̃1 =
√

B11 + |B12|φ̃1
(44)

g̃2 =
√

B11 − |B12|φ̃2,

9
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and

φ̃1(x, z) = b∗φ1(x, z) + bφ2(x, z)
(45)

φ̃2(x, z) = b∗φ1(x, z) − bφ2(x, z)],

with b = √
B12/2|B|12|. It should be noted that both generating functions can be different from

zero even if the original Fourier harmonics are completely correlated (i.e. when |R(θ)| = 1).
In such a case the correlation factor will oscillate while fulfilling the inequality |B12| < B11.

Obviously, the generating functions g̃n are governed by the same NLS equation (40) as the
original functions φn(x, z) but they satisfy different boundary conditions which are determined
by the transformations (44) and (45). In a general case, the resulting equations are equivalent
to those describing coherent propagation of a two-component vector field in a nonlinear Kerr
medium with the generating functions, g̃1,2, playing the role of the vector components.

5. Conclusions

Most efforts to describe nonlinear propagation of partially coherent light rely, directly or
indirectly, on the basic description of a stochastic process in terms of its correlation function.
The present analysis has considered in detail the relation between the correlation function and
the different characteristic functions, which have been used for describing the propagation of
partially coherent light in nonlinear and non-instantaneous media, i.e. the modal expansion,
the coherent density function, the correlation function and the Wigner function approaches.
Special emphasis has been given to the problem of relating the source conditions of the
stochastic field to the corresponding source conditions for the characteristic functions used in
the different approaches and to the problem of the uniqueness of these functions. Specifically,
we demonstrate that the coherent density function is not uniquely determined by the stochastic
properties of the light field, but rather plays the role of a convenient auxiliary or generating
function. It is also shown how to generalize the coherent density function approach to situations
where the light field emanates from several sources, which do not necessarily have the same
stochastic properties. Actually, for n partially correlated sources of coherent light, the coherent
density approach must be generalized to include one coherent density function for each of the
n different sources.

The generality of the approach is illustrated by several examples and e.g. basic equations,
describing the interaction of two soliton stripes emanating from two independent, but partially
correlated, sources are derived in terms of two nonlinearly coupled vector equations for the
corresponding generating functions.
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